
etal anomalies affecting the axial skeleton
of Tht heterozygotes (see Figure 4). This
mutation was mapped to chromosome 5
(Beechey and Searle 1980) and was fur-
ther shown to be noncomplementary with
a novel insertional mutation usdT^a7mpw

that causes defects in the vertebrae of the
distal tail (Schrick et al. 1995). When both
alleles are present in the same mouse,
they lead to a more severe defect in ver-
tebrae at the tip of the tail than does ei-
ther mutation by itself, suggesting that
usc/rgN370Rpw ^ d ffjt m i g h t b e alleles

(Schrick et al. 1995). It should now be
possible to clone the gene using the
US£fgN37onpw transgene insertion and study
its aberrant expression in the Tht and

mutant mice.
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Inheritance of Body
Coloration in the Lyretail
Toothcarp (Aphyosemion
australe Cyprinodontidae)

J. S. Frankel

The lyretail toothcarp (Aphyosemion aus-
trale) exhibits two body colorations. These
are a brown coloration characteristic of A
australe and an orange color variant
sometimes referred to as the golden lyre-
tail. Segregation patterns observed in the
offspring from 11 different matings support
the hypothesis that body coloration in A.
australe is controlled by two autosomal
loci acting in a complementary fashion,
with dominance at both loci required for
the expression of the brown phenotype.

Egg-laying toothcarps in the genus Aphy-
osemion (Cyprinodontidae) exhibit a vari-
ety of coloration patterns and body mark-
ings (Axelrod and Vorderwinkler 1962;
Paysan 1975). The lyretail toothcarp
(Aphyosemion australe), one of the more
common African "nonannual" toothcarps,
exhibits two distinct body color pheno-
types. Characteristically this species ex-
hibits shades of brown on the epaxial and
hypaxial regions of the body with small
red spots (Mills 1993). A color variant of
-4. australe, which arose among aquarium
stocks of A. australe and is sometimes re-
ferred to as the golden lyretail, is distinc-
tively orange in color with varying inten-
sities of red spotting on its flanks. Natural
populations of this species are almost ex-
clusively comprised of individuals exhib-
iting the brown phenotype.

As a result of an extensive use of A. aus-
trale in my laboratory for comparative
studies on the regulation and divergence
of isozyme loci, I had the opportunity to
ascertain the nature of the inheritance of
body coloration in the lyretail toothcarp.
The present communication reports on
these findings.

Materials and Methods

Healthy adults of A. australe exhibiting ei-
ther the brown coloration pattern char-
acteristic of this species or its orange col-
or variant were obtained from Mid-Atlantic
Distributors, Inc. (Springfield, Virginia),
and maintained in 20 gal capacity holding
tanks at 26°C. Sexually mature pairs exhib-
iting the brown and orange phenotypes
were selected at random and placed In 5
gal capacity breeding tanks. All fry were
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obtained from natural matings under con-
ditions described by Axelrod and Vorder-
winkler (1962). Subsequent to each spawn-
ing, the parentals were removed from the
breeding tank. After leaving their egg-
shells, fry from each mating were placed
in their own 5 gal rearing tank and allowed
to develop until their phenotype could be
visually determined. Parental and selected
F, fishes of both phenotypes were subse-
quently used in a series of 31 matings, and
the phenotypic data from all progeny were
recorded and subjected to chi-square anal-
ysis.

Results and Discussion

Probable genotypes, observed phenotypic
frequencies, expected ratios, and proba-
bility of fit for A. australe analyzed for the
inheritance of the brown and the orange
(golden lyretail) phenotypes are given In
Table 1. All P, F,, and F2 individuals con-
formed to either the brown or orange phe-
notype. Parentals exhibiting the brown
coloration (Al, A2, A3, and A4) were
scored as homozygous dominants, since
all matings involving these individuals re-
sulted In that phenotype (matings 1-6, 13,
14, 17, 18, 23, 24). Parentals exhibiting the
orange phenotype (HI, H2, and H3) were
scored as homozygous recessives, as all
matings between these fishes resulted in
all orange fry (matings 7-11). In addition,
reciprocal matings between orange and
brown parentals always resulted in brown
progeny (matings 17 and 18). Further,
crosses between these F2s resulted in a
satisfactory fit to a 9 brown: 7 orange ratio
of F2 progeny (matings 19-22), commen-
surate with a modified 9:3:3:1 ratio re-
sulting from dominant complementary
gene action (i.e., A B is required for the
brown phenotype). Backcrosses of brown
parentals consistently bred true (matings
13, 23, 24), while backcrosses of orange
parentals resulted in a satisfactory fit to
the expected 1 brown: 3 orange ratio (mat-
ings 25-28).

Complementary gene action as the
mode of inheritance of body coloration in
A. australe is also supported by matings
employing F, fry presumed to be homo-
zygous recessives (N2). Matings between
N2 fishes and heterozygotes (N3 and N4)
resulted in a satisfactory fit to the expect-
ed 1:3 ratio (matings 29-31), while N2 x
N2 matings and backcrosses of orange

parentals (matings 15 and 16, respective-
ly) resulted in the expected orange fry.

In conclusion, the data presented here
supports the hypothesis that body color-
ation in A. australe is controlled by two
autosomal loci acting in a complementary
fashion, with dominance at both loci re-
quired for the expression of the brown
phenotype. It is interesting to note that a
similar mode of inheritance has been ob-
served for the blue and obliterative trunk
colorations in the three-spot gourami (Tri-
chogaster trichopterus Pallas; Frankel
1992).

From the Department of Biology, Howard University,
Washington, D.C. 20059.
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Table 1. Probable genotypes (PG), expected ratios, and probability of fit for matings among brown and
orange lyretail toothcarp

Mating
no

1
2
3
4
5
6

Sum of

7
8
9

10
11
Sum of

12
13
14
Sum of

Parents

9

Al
A2
A3
A4
Al
A4

(PG)

(AABB)
(AABB)
(AABB)
(AABB)
(AABB)
(AABB)

X
X
X
X
X
X

i

Al
A2
A3
A4
A2
Al

F, offspring from cross type AABB X

HI
H2
H3
HI
H2

(aabb)
(aabb)
(aabb)
(aabb)
(aabb)

X
X
X
X
X

HI
H2
H3
H2
HI

F, offspring from cross type aabb X

Nl
Nl
A2

(AABB)
(AABB)
(AABB)

X
X
X

Nl
Al
Nl

F, and backcross offspring from
cross type AABB

15
16

N2
HI

X AABB
(aabb)
(aabb)

X
X

N2
N2

Sum of F, and backcross offspring from
cross type aabb X aabb

17
18
Sum of

Al
H3

(AABB)
(aabb)

X
X

F, offspring Irom cross types
AABB X aabb and aabb X AABB
19
20
21
22
Sum of

23
24

N3
N4
N3
N4

(AaBb)
(AaBb)
(AaBb)
(AaBb)

X
X
X
X

HI
H3

N3
N4
N4
N3

F, offspring from cross type AaBb X

Al
N4

(AABB)
(AaBb)

X
X

N3
A3

Sum of backcross offspring from cross types
AABB X AaBb and AaBb X AABB
25
26
27
28
29
30
31
Sum of
AaBb X

N3
H3
N3
H3
N3
N2
N2

(AaBb)
(aabb)
(AaBb)
(aabb)
(AaBb)
(aabb)
(aabb)

X
X
X
X
X
X
X

HI
N4
HI
N4
N2
N4
N4

(PG)

(AABB)
(AABB)
(AABB)
(AABB)
(AABB)
(AABB)

AABB
(aabb)
(aabb)
(aabb)
(aabb)
(aabb)

aabb
(AABB)
(AABB)
(AABB)

(aabb)
(aabb)

(aabb)
(AABB)

(AaBb)
(AaBb)
(AaBb)
(AaBb)

AaBb
(AaBb)
(AABB)

(aabb)
(AaBb)
(aabb)
(AaBb)
(aabb)
(AaBb)
(AaBb)

F, and backcross offspring from cross types
aabb and aabb X AaBb

Phenotypic

Brown

33 (Nl)
30
25
37
39
25

189

0
0
0
0
0
0

36
30
32

98

0
0

0
25 (N3)
32 (N4)

57

14
21
16
23
74

36
33

69

9
10
4

11
8
6

12

50

frequencies

Orange

0
0
0
0
0
0
0

23 (N2)
30
35
28
32

148

0
0
0

0

34
31

65

0
0

0

10
14
13
15
52

0
0

0

25
27
23
26
28
20
29

178

Expect-
ed
ratio

1:0
1:0
IK)
1-0
1.0
1:0
1:0

0:1
0:1
0 1
0.1
0:1
0:1

1:0
IK)
1:0

1:0

0:1
0 1

0:1

1:0
IK)

1:0

9:7
9:7
9:7
9:7
9:7

1:0
1:0

1.-0
1:3
1:3
1:3
1:3
1:3
1:3
1:3

1:3

P

—

—
—
—

—
—

—
—

—

—

—

.90-.75

.50-.25
>.9O
.75-.5O
.75-.5O

—

.9O-.75

.9O-.75

.25-. 10

.75-.50

.75-50

.9O-.75

.75-.50

.50-.25

Fish designated (A) are brown parentals; fish designated (H) are orange parentals; fish designated (N) are first-
generation offspring and exhibit either the brown or orange phenotype.
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