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In the Southwest Atlantic, coral reefs are unique due to 
their growth form, low species richness, and a high level 
of endemic coral species, which include the most impor-
tant reef builders. Although these reefs are the only true 
biogenic reefs in the South Atlantic Ocean, population 
genetic studies are still lacking. The purpose of this study 
was to develop a suite of microsatellite loci to help gain 
insights into the population diversity and connectivity of the 
endemic scleractinian coral with the largest distributional 
range along the Southwest Atlantic coast, Mussismilia his-
pida. Fourteen microsatellite loci were characterized, and 
their degree of polymorphism was analyzed in 33 individu-
als. The number of alleles varied between 4 and 17 per loci, 
and Ho varied between 0.156 and 0.928, with 2 loci show-
ing significant heterozygote deficiency. Cross-amplification 
tests on the other 2 species of the genus (Mussismilia bra-
ziliensis and Mussismilia harttii) demonstrated that these 
markers are suitable for studies of population diversity and 
structure of all 3 species of Mussismilia. Because they are 
the most important reef builders in the Southwest Atlantic, 
the developed microsatellite loci may be important tools 
for connectivity and conservation studies of these endemic 
corals.

Subject areas:  Conservation genetics and biodiversity; 
Population structure and phylogeography

Key words:   conservation genetics, endemic species, 
hypervariable markers, Mussidae

Coral reefs along the Southwest Atlantic coast are unique 
due to their low scleractinian species richness combined 

with a high degree of  endemic species (36%), which include 
the 3 most important reef  building species (Mussismilia his-
pida, Mussismilia braziliensis, and Mussismilia harttii; Laborel 
1969). As with most coral reefs around the world, these 
coral reefs are suffering from a variety of  anthropogenic 
impacts, such as overfishing, eutrophication, among oth-
ers. Although at slow pace compared with many reef  eco-
systems, conservation efforts are being undertaken, for 
instance, with the establishment of  marine protected areas 
(Castro and Pires 2001) and coral reefs environmental edu-
cation programs (Projeto Coral Vivo; http://coralvivo.org.
br/).

One of  the key objectives in marine conservation has 
been to understand population connectivity (Cowen and 
Sponaugle 2009) because it maintains high levels of  genetic 
diversity and prevents the reduction of  the effective popula-
tion size, which are, both, crucial in terms of  resilience to 
natural and anthropogenic disturbances (Frankham 2005). 
The knowledge of  genetic diversity and gene flow among 
populations of  corals can help reef  conservation manage-
ment by determining, for example, if  a population is suf-
fering from bottleneck or inbreeding depression and which 
populations are source and sink of  recruits (Baums 2008). 
Additionally, the knowledge of  genetic diversity and con-
nectivity can help determine the ideal size and location of  
marine protected areas (Baums 2008, Underwood et  al. 
2009).

The degree of  reef  connectivity can be assessed through 
estimates of  gene flow using molecular tools (Roberts 
et  al. 2006). In the case of  scleractinian corals, the most 
efficient molecular tool for studying population connec-
tivity has been the use of  hypervariable markers, such as 
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microsatellites (Van Oppen and Gates 2006, Baums 2008), 
because mitochondrial markers are extremely conserved in 
these animals (Shearer et al. 2002). So far, there are no stud-
ies that have assessed genetic diversity or gene flow among 
coral populations in the Southwest Atlantic coast, even 
though these are the only true biogenic coral reefs in the 
South Atlantic Ocean.

The coral M. hispida is endemic to the Atlantic coast of  
South America and is one of  the most important reef  build-
ers with the greatest distribution along the coast (>2400 
km; Castro and Pires 2001). This species occurs over a wide 
latitudinal and ecological range, occurring from the state 
of  Maranhão (00°53′00″S; 044°16′00″W) southward to São 
Paulo state (24°19′18″S; 46°10′57″W), Brazil. Mussismilia 
hispida is a hermaphroditic broadcast spawner that liber-
ates gamete bundles yearly at different times of  the year 
depending on the locality (Pires et al. 1999; Neves and Pires 
2002). This asynchrony in gamete production among locali-
ties corroborates the necessity of  population genetics stud-
ies to better understand the larval dispersal capacity of  this 
species. Compared with M. hispida, the other 2 species have 
more restricted distributions, with M. harttii occurring from 
the state of  Ceará southward to Bahia state and M. brazilien-
sis being endemic to Bahia, Brazil (Castro and Pires 2001). 
The present study developed a suite of  microsatellite loci for 
M.  hispida, which were also tested and proved to be poly-
morphic in the other 2 Mussismilia species (M. braziliensis and 
M. hartii). These loci will be important tools for the assess-
ment of  genetic diversity and population structure of  these 
species. Such studies could greatly help the evaluation of  the 
conservation status of  the species and future management 
strategies along the Brazilian coast.

Materials and Methods
Sampling and DNA Extraction

Because M. hispida harbors a symbiotic dinoflagellate (zoox-
anthellae  =  Symbiodinium spp.), zooxanthellae-free animal 
genomic DNA was obtained from sperm, which was col-
lected during spawning on 6th August 2010. Colonies of  
M. hispida were collected from Recife de Fora reef  in Porto 
Seguro, Bahia state, Brazil (16°24′S; 038°59′W) and placed 
in a semiclosed tank system at “Projeto Coral Vivo” base in 
Arraial d’Ajuda, Bahia, Brazil. During the release spawning, 
5–10 gamete bundles, free of  zooxanthellae, were collected 
from one of  the colonies and placed in 15-ml centrifuge 
tubes, which were filtered through a 50-μm plankton mesh 
in order to separate the sperm from the high lipid oocytes. 
The sperm with seawater were centrifuged to concentrate 
the sperm and placed in a lysis solution of  CHAOS (4 M 
Guanidine Thiocyanate, 0.5% n-Lauroylsarcosine Sodium, 
25 mM Tris–HCl pH 8.0, 0.1 M B-mercaptoethanol; Fukami 
et al. 2004). The developed microsatellite loci were tested 
on 33 individuals of  M.  hispida collected also at Recife 
de Fora, Bahia, Brazil. Additionally, loci were tested for 
polymorphism in 4 individuals each of  M.  braziliensis 
and M. harttii, collected at the same locality as M. hispida. 

DNA extractions of  all specimens were performed with 
the Phenol:Chloroform method described in the study by 
Fukami et al. (2004).

Microsatellite Development

Microsatellites were isolated from an enriched partial 
genomic library following the protocol of  Bloor et  al. 
(2001). The high molecular weight genomic DNA (10 µg) 
was digested with the restriction enzyme Sau IIIA (Jena 
Bioscience), which was then ligated to phosphorylated 
double-stranded linkers and size selected (between 500 
and 1000 bp) through excision from a 2% agarose gel. The 
DNA was purified using a GFX PCR DNA and Gel Band 
Purification Kit (GE) following the manufacturer’s instruc-
tions. Fragments were hybridized with biotinylated (CA)12 
and (CAA)8 probes and isolated using streptavidin-coated 
magnetic beads (Invitrogen). A PCR primed with the for-
ward linker oligo was used for enrichment of  DNA con-
taining microsatellites. Enriched fragments were cloned 
using pGEM-T vectors (Promega) and One Shot TOP10 
competent cells (Invitrogen). Recombinant clones were 
identified by black/white screening on S-Gal/LB/Agar 
(Sigma-Aldrich) plates with ampicillin (100  µg/mL). The 
presence of  a microsatellite insert was confirmed by 2 or 
more PCR products after amplification using the forward 
linker oligo and (nonbiotinylated) microsatellite oligos as 
primers. Forty-three positive clones were sequenced in 
both directions in an ABI3500 (Applied Biosystems) auto-
mated sequencer. Sequences were edited using SeqMan 
(DNAStar). Sequences from all 43 clones have been depos-
ited at GenBank (accession numbers KJ577491–KJ577533) 
in compliance with the Journal’s data archiving policy.

Twenty-eight pairs of  primers flanking microsatellite 
regions were designed using the Primer3 Input program 
(http://frodo.wi.mit.edu/) together with the OligoAnalyzer 
3.1 (http://www.idtdna.com/analyzer/applications/oli-
goanalyzer/). Because we used the tailed primer method 
(Schuelke 2000), all forward primers were synthesized with a 
M13 tail at their 5′ end (TGT AAA ACG ACG GCC AGT), 
so that primers labeled with different dyes (6-FAM, VIC, 
NED, or PET) could anneal to the newly replicated strand 
during PCR reactions. Hence, all PCR reactions contained 
3 primers: A  tailed forward primer (with the M13 tail), a 
labeled primer (M13 with VIC, NED, PET, or 6-FAM fluo-
rescent dyes), and a reverse primer. Each PCR reaction con-
sisted of  1U GoTaq (Promega), 1× PCR Buffer (Promega), 
0.20 mM dNTPs (Invitrogen), between 1.5 and 2.5 mM 
MgCl2 (Table 1), 10 µg bovine serum albumin (Invitrogen), 
0.2  µM of  tailed primer, 0.4  µM of  labeled primer, and 
0.8 µM of  reverse primer in 10 µL reactions with approxi-
mately 5–10 ng of  DNA template. Cycling conditions were 
95 °C, 3 min, 5 cycles at 95 °C, 30 s; 52 °C–62 °C (Table 1), 
30 s; 72 °C, 45 s, 30 cycles at 92 °C, 30 s; 52 °C–62 °C, 30 
s; 72  °C, 55 s, and a final extension at 72  °C for 30 min. 
PCR products were pooled with GS600-LIZ size stand-
ard (Applied Biosystems) and sized using the automated 
sequencer ABI3500 (Applied Biosystems). The same labeled 
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primer was used for each microsatellite locus across all 
amplifications to avoid problems of  dye shift (Sutton et al. 
2011). Genotypes were determined using the program 
GeneMapper v. 4.1 (Applied Biosystems).

Data Analyses

Observed and expected heterozygosities were calculated 
using the program Genetix 4.04 (Belkhir et al. 2002), whereas 
deviations from Hardy–Weinberg (HW) and linkage equilib-
rium conditions were tested using FSTAT (Goudet 1995). 
HWE test was based on permutations of  alleles among 
individuals using the inbreeding coefficient FIS (Weir and 
Cockerham 1984; Goudet 1995). The occurrence of  null 
alleles was investigated using the program Micro-Checker 
(Van Oosterhout et al. 2004). In all multiple tests, the false 
discovery rate (Pike 2011) was used to verify significance lev-
els (Table 1).

Results and Discussion
The Brazilian coast not only has the only true biogenic coral 
reef  system in the South Atlantic Ocean, but it also has a 
unique reef  system characterized by distinct growth forms 
(i.e., Chapeirões) occurring in areas with exceptionally high 
levels of  sedimentation (Leão et al. 1988). Even though the 
most important reef  builders along the coast are endemics, 
population genetics studies are inexistent for Southwestern 
Atlantic corals, possibly due to the lack of  adequate markers 
(Ridgway and Gates 2006).

In the present study, 14 loci were developed and used 
to analyze 33 individuals of  the endemic scleractinian coral 

M.  hispida (see Supplementary Material online). Of  the 14 
pairs of  primers developed, 3 were dinucleotide (Mhi1, 
Mhi2, and Mhi18) and 11 trinucleotide, a similar propor-
tion found by Casado-Amezúa et  al. (2011) using di- and 
trinucleotide probes for the coral Cladocora caespitosa in the 
Mediterranean.

An average of  11 alleles were found among all 14 loci with 
a minimum of  4 (Mhi17) and a maximum of  17 (Mhi2). Ho 
values varied between 0.156 and 0.928, whereas He values var-
ied between 0.129 and 0.926 (Table 1). Four loci (Mhi5, Mhi21, 
Mhi23, and Mhi2) had significant heterozygote deficiency in the 
HWE deviation analyses. Heterozygote deficiencies in micros-
atellite analyses seem to be common among scleractinian corals 
(Underwood et al. 2006; Van Oppen et al. 2007, among others) 
and could be due to restricted gamete dispersal, inbreeding, or 
the Wahlund effect (Maier et al. 2005; Underwood et al. 2007). 
Two of  those loci (Mhi5 and Mhi21) had high significant 
homozygote excesses in the Micro-Checker analyses, suggest-
ing the possible presence of  null alleles (Table 1). Results of  
the Micro-Checker showed no evidence of  scoring errors or 
large allele dropout for all 14 analyzed loci.

In cross-amplification analyses with individuals of  M. bra-
ziliensis and M.  harttii, 13 of  the 14 loci amplified in both 
species (Table  1). Most of  the amplified loci also proved 
polymorphic in these species, with the exception of  Mhi16 
in M. harttii and Mhi24 in M. braziliensis, although this could 
be due to the low number of  individuals sampled. The suc-
cessful transferability extends the use of  these markers to the 
2 other extant species of  the genus Mussismilia, making them 
useful for studies of  gene diversity, connectivity, and con-
servation of  the 3 most important coral reef  builders of  the 
Southwest Atlantic.

Table 1  Description of  the 14 loci developed for Mussismilia hispida (N = 33), with their respective GenBank Accession Numbers, showing 
which loci amplified individuals of  Mussismilia braziliensis (Mbr, N = 4) and Mussismilia harttii (Mha, N = 4) and how many alleles were found 
for each species

Locus/GenBank 
Accession Number Ta (°C)

MgCl2  
(mM)

Size range 
(bp)a N A He Ho FIS P value* Mbr Mha

Mhi1/KF609532 60 2.5 170–204 33 9 0.638 0.697 −0.094 0.221 4 3
Mhi2/KF609533 56 1.5 176–404 33 17 0.894 0.697 0.223 0.007 4 7
Mhi4/KF609534 62 2.5 86–239 33 7 0.811 0.667 0.180 0.032 2 4
Mhi5/KF609535 56 1.5 163–393 28 16 0.928 0.643 0.311 0.004 5 4
Mhi14/KF609536 56 2.0 219–295 33 9 0.761 0.788 −0.036 0.457 3 4
Mhi16/KF609537 58 2.0 174–197 31 5 0.156 0.129 0.172 0.207 2 1
Mhi17/KF609538 54 2.5 168–184 33 4 0.443 0.455 −0.026 0.525 2 4
Mhi18/KF609539 52 2.5 164–306 29 12 0.644 0.552 0.146 0.064 2 2
Mhi20/KF609540 58 2.5 172–231 32 16 0.854 0.742 0.133 0.046 3 4
Mhi21/KF609541 52 2.5 192–221 31 10 0.840 0.581 0.312 0.004 4 4
Mhi23/KF609542 58 2.0 217–257 33 14 0.902 0.727 0.196 0.007 3 5
Mhi24/KF609543 54 2.0 113–160 27 11 0.850 0.926 −0.092 0.189 1 3
Mhi26/KF609544 54 2.0 164–220 33 11 0.856 0.849 0.009 0.543 2 4
Mhi27/KF609545 56 2.0 151–181 33 9 0.819 0.849 −0.036 0.457 x x
Across loci 10.7 0.664 0.731 0.107 0.004

An x denotes unsuccessful amplification in Mbr and Mha; Ta = primer’s annealing temperature; N = number of  individuals genotyped; A = number of  
alleles; He = expected heterozygosity; Ho = observed heterozygosity; FIS = inbreeding coefficient—significant departures from HWE, as verified by False 
Discovery Rate procedures, are in bold.
aAllele size discounting the tailed extension of  the primers.
*Unadjusted P values.
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Supplementary material can be found at http://www.jhered.
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